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Abstract

We �rst generalize the concept of inverse images with respect to the line y = x to the inverse
images with respect to y = mx + b, and we extend the idea to three dimensions. Next, we �nd
the re�ection of a point on curve C1 with respect to a moving point P on C2: We �nd the locus
of the point P; which links to the concept of orthotomic and caustic curves. The concepts can be
extended to the corresponding ones in 3-D. It is interesting to see how technological tools have
prompted us to relate Mathematics to similar concepts used in Physics.

1 Introduction
With the aid of [ClassPad] we �nd the inverse of a curve with respect to a general line of the form
y = mx + b. If the software can simulate the appearance of the re�ection curve (as can been seen
from section 1.1), then its equation must exist, and if discovered, can be extended to a corresponding
result in 3-D. The derivation is explained in Section 1.2. We next �nd the re�ections of a point P on
a curve C1with respect to all tangents of another curve C2 and investigate its locus. It turns out the
locus is the orthotomic curve of C2 relative to P and the evolute of the orthotomic curve is called the
caustic. We describe how we extend the 2-D �ndings described in section 2 regarding orthotomic and
caustic curves to the corresponding ones in 3-D in section 3.

1.1 Motivations

We want to �nd the re�ection of y =
p
x+1 with respect to y = x+2. We refer to this as the general

inverse for y = f(x) with respect to y = mx+ b:We explore this �nding by using [ClassPad].

1. First sketch y =
p
x+ 1 and y = x+ 2.
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2. Pick a point A on y =
p
x+ 1 and construct the corresponding point A0 that is symmetric to A

with respect to y = x+ 2:

3. The trace of A0 is shown in Figure 1 and we would like to �nd the equation for the trace of A0:

Figure 1. The re�ection of y =
p
x+ 1 with respect to y = x+ 2

4. We summarize above and motivation of deriving some results in this paper in this video clip,
see [8]. The corresponding ClassPad eActivity can be found in [9].

Solution:

� Assume the general case for �nding the inverse of [x(t); y(t)] with respect to y = mx+ b:

� Set � = tan�1m.

� We denote the re�ection of [x(t); y(t)] with respect to y = mx+ b by [p(t); q(t)]:

� We shall derive the following later in section 1.3.�
p(t)
q(t)

�
=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
x(t)

y(t)� b

�
+

�
0
b

�
: (1)

First, Let us refer to some examples.

Example 1 Find the re�ection of
�
2 cos t� cos(2t)
2 sin t� sin(2t)

�
with respect to y = 2x+ 1:

We set � = tan�1 2 and b = 1 in (1) (with ClassPad) to obtain
�
p(t)
q(t)

�
to be

�
�2 cos(t+ 2 tan�1(1

2
)) + cos(2t+ 2 tan�1(1

2
))� 4

5
8 cos t+6 sin t�4 cos 2t�3 sin 2t+2

5

�
: (2)
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We plot
�
p(t)
q(t)

�
(thick) together with

�
x(t)
y(t)

�
(thin) below:

Figure 2. Another re�ection.

Example 2 Find the re�ection of the Hypocycloid
�
(a� b) cos t+ b cos((a

b
� 1)t)

(a� b) sin t+ b sin((a
b
� 1)t)

�
(when a = 3

and b = 1) with respect to y = 2x+ 1:

We set � = tan�1 2 and we obtain
�
p(t)
q(t)

�
to be

�
�2 cos(t+ 2 tan�1(1

2
))� cos(2t� 2 tan�1(1

2
))� 4

5
8 cos t+6 sin t+4 cos 2t�3 sin 2t+2

5

�
; (3)

we plot
�
p(t)
q(t)

�
(thick) together with

�
x(t)
y(t)

�
(thin) below:

Figure 3. A re�ection of Hypocycloid with respect to y = 2x+ 1:
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1.2 General inverse with respect to a plane
We begin by �nding the re�ection (denoted by [p(t); q(t); r(t)]) of a parametric curve [x(t); y(t); z(t)]
with respect to a plane P passing through the origin ax+ by+ cz = 0:The normal vector of the plane
P is denoted by n = (a; b; c).
We �rst split the vector v (from the origin to (x(t); y(t); z(t))) into its components which are

normal to the plane (denoted v?P ) and parallel to the plane (denoted vkP ); in other words, v =
v?P + vkP : We note that v?P is the orthogonal projection of v on the normal vector n = (a; b; c).
Then the re�ection of [x(t); y(t); z(t)] is24p(t)q(t)

r(t)

35 = �v?P + vkP = �v?P + (v � v?P ) = v � 2v?P (4)

= v � 2 v � njjnjj2n =
vjjnjj2 � 2(v � n)n

jjnjj2

=
1

a2 + b2 + c2

24(a2 + b2 + c2)
24x(t)y(t)
z(t)

35� 2(ax(t) + by(t) + cz(t))
24ab
c

3535
=

1

a2 + b2 + c2

24�a2 + b2 + c2 �2ab �2ac
�2ab a2 � b2 + c2 �2bc
�2ac �2bc a2 + b2 � c2

3524x(t)y(t)
z(t)

35 :
We have proved the following:

Theorem 3 Let S be a surface represented by

24x(s; t)y(s; t)
z(s; t)

35. The re�ection of S with respect to the plane
ax+ by + cz = 0 is given by24p(s; t)q(s; t)

r(s; t)

35 = 1

a2 + b2 + c2

24�a2 + b2 + c2 �2ab �2ac
�2ab a2 � b2 + c2 �2bc
�2ac �2bc a2 + b2 � c2

3524x(s; t)y(s; t)
z(s; t)

35 : (5)

The same concept also works for �nding the re�ection of a parametric surface with respect to an
arbitrary plane, ax + by + cz = d. We simply need to make minor adjustment in equation (4) as
follows:

Theorem 4 Let S be a surface represented by

24x(s; t)y(s; t)
z(s; t)

35 and (0; 0; d
c
) be the z� intercept of the plane

P : ax+ by + cz = d: Then the re�ection of S with respect to P is given by24p(s; t)q(s; t)
r(s; t)

35 (6)

=
1

a2 + b2 + c2

24�a2 + b2 + c2 �2ab �2ac
�2ab a2 � b2 + c2 �2bc
�2ac �2bc a2 + b2 � c2

3524x(s; t)� 0y(s; t)� 0
z(s; t)� d

c

35+
2400
d
c

35
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1.3 General Inverses in 2-D

We demonstrate that the 3-D formula (6) does reduce to (1) in 2-D.
When c = 0, a plane equation ax+ by + cz + d = 0 becomes a line of the form ax+ by + d = 0:

The slope of this line is �a
b
: Therefore, we set � = tan�1(�a

b
) and we have

cos2 � =
1

tan2 � + 1
=

b2

a2 + b2
; (7)

cos 2� = 2 cos2 � � 1 = b2 � a2
a2 + b2

; and

sin 2� = 2 tan � cos2 � =
�2ab
a2 + b2

:

By using the y� intercept (0; �d
b
) of the line ax + by + d = 0 and (6), we obtain the general

inverse [p(t); q(t)] of [x(t); y(t)] with respect to the line ax+ by + d = 0 (i.e., y = �a
b
x+ �d

b
) :

�
p(t)
q(t)

�
=

1

a2 + b2

�
�a2 + b2 �2ab
�2ab a2 � b2

� �
x(t)� 0
y(t)� (�d

b
)

�
+

�
0
�d
b

�
(8)

=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
x(t)� 0
y(t)� (�d

b
)

�
+

�
0
�d
b

�
:

which coincides with the re�ection of [x(t); y(t)] with respect to a line y = mx + b in equation
(1).

1.4 General Inverse Examples in 3D

We apply (6) on Steiner's Roman Surface of the form

24x(s; t)y(s; t)
z(s; t)

35 =
24 r2 cos2 t�sin 2s2
r2 sin s�sin 2t

2
r2 cos s�sin 2t

2

35 with s 2 [��; �]
and t 2 [0; 2�] to �nd the re�ection of

24x(s; t)y(s; t)
z(s; t)

35 with respect to the plane ax + by + cz = 0. The

result is shown as follows:2664
1
2
(�a2+b2+c2)�r2�cos2 t�sin 2s�abr2�sin s�sin 2t�acr2 cos s�sin 2t

a2+b2+c2

�abr2(cos2 t sin 2s)+ 1
2
(a2�b2+c2)r2(sin s�sin 2t)�bcr2 cos s�sin 2t

a2+b2+c2

�acr2(cos2 t sin 2s)+ 1
2
(a2�b2+c2)r2(cos s�sin 2t)�bcr2 sin s�sin 2t

a2+b2+c2

3775 : (9)

We use the following example to demonstrate

Example 5 Let the surface S be the Roman Surface represented by

24 22 cos2 t�sin 2s
2

22 sin s�sin 2t
2

3 + 22 cos s�sin 2t
2

35 : Then the

247



The Electronic Journal of Mathematics and Technology, Volume 2, Number 3, ISSN 1933-2823

re�ection of S with respect to the plane x+ y + 2z = 1 is24 4 cos2 t�sin 2s�2 sin s�sin 2t�6�4 cos s�sin 2t
3

�2 cos2 t�sin 2s+4 sin s�sin 2t�6�4 cos s�sin 2t
3

�4 cos2 t�sin 2s+4 sin s�sin 2t�3�2 cos s�sin 2t
3

+ 1
2

35 :
We demonstrate the surfaces of S; its re�ection, and x + y + 2z = 1 as in Figure 4. Please see [10]
for detailed computations.

Figure 4. A re�ection of Roman Surface with respect to x+ y + 2z = 1:

2 Generalizations in 2-D, orthotomic and caustic curves
It is reasonable to discuss the formula for the re�ection of a curve C1 = [x1(t); y1(t)] with respect
to a parametric curve C2 = [x(s); y(s)]; which we denote it by [p(s; t); q(s; t)]: Fixing a point on C1
(i.e., �xing the value of t), we want to �nd the locus [p(s; t); q(s; t)] of the re�ections of [x1(t); y1(t)]
with respect to C2 (i.e., with respect to all tangents of C2):
We recall the general inverse [p(t); q(t)] of [x(t); y(t)] with respect to a line ax+ by+d = 0 (i.e.,

y = �a
b
x+ �d

b
) to be �

p(t)
q(t)

�
=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
x1(t)� 0
y1(t)� (�db )

�
+

�
0
�d
b

�
; (10)

where � = tan�1 �a
b
= tan�1m:

Let (x(s0); y(s0)) be a point on C2. Since the slope m of the tangent line to C2 at (x(s0); y(s0))
can be expressed by dy

dx
jx=s0 . The tangent line equation to C2 at (x(s0); y(s0)) is

y =

�
dy

dx
js=s0

�
x+

�
y(s0)�

�
dy

dx
js=s0

�
x(s0)

�
: (11)

=

" 
dy
ds
dx
ds

!
js=s0

#
x+

"
y(s0)�

 
dy
ds
dx
ds

!
js=s0 � x(s0)

#
:
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To describe the locus for
�
p(s; t)
q(s; t)

�
as t is �xed, we think of s0 as the variable s. By (10), we can

write �
p(s; t)
q(s; t)

�
=

�
cos
�
2 tan�1

��
dy
dx

���
sin
�
2 tan�1

��
dy
dx

���
sin
�
2 tan�1

��
dy
dx

���
� cos

�
2 tan�1

��
dy
dx

���� ��
x1(t)� 0

y1(t)�
�
y(s)�

�
dy
dx

�
� x(s)

�� (12)

+

�
0�

y(s)�
�
dy
dx

�
js=s � x(s)

�� :
For the rest of the paper, a curve C3 that is the re�ection of a curve C1 with respect to a curve C2
at a point P 2 C2 is equivalent to a curve C3 that is the re�ection of a curve C1 with respect to the
tangent line to C2 at a point P 2 C2. In summary, we have the following

Theorem 6 LetC1 = [x1(t); y1(t)] andC2 = [x(s); y(s)] be two smooth curves. IfC3 = [p(s; t); q(s; t)]
is the re�ection of C1 with respect to C2. Then�

p(s; t)
q(s; t)

�
=

�
cos
�
2 tan�1

��
dy
dx

���
sin
�
2 tan�1

��
dy
dx

���
sin
�
2 tan�1

��
dy
dx

���
� cos

�
2 tan�1

��
dy
dx

���� ��
x1(t)� 0

y1(t)�
�
y(s)�

�
dy
dx

�
� x(s)

�� (13)

+

�
0�

y(s)�
�
dy
dx

�
� x(s)

�� :

2.1 Orthotomic curves
We have geared our discussion into the �eld of optics. An orthotomic curve is the set of re�ections
of a given point O with respect to all the tangents of a given curve not passing through O. In other
words, assume we are given a light source O at a point on C1 = [x1(t); y1(t)]. Then the locus of
the re�ections of O about C2 is the orthotomic curve of C2 relative to O. We mention the following
observations and omit their proofs. Instead, we use examples and technological tools to explore these
observations and to demonstrate how evolving technological tools allow us to quickly expand our
learning horizons to applications.

Theorem 7 LetC1 = [x1(t); y1(t)] andC2 = [x(s); y(s)] be two smooth curves, andC3 = [p(s; t); q(s; t)]

is the re�ection of C1 with respect to C2. Then the mapping of (x1(t); y1(t))!
�
p(s; t)
q(s; t)

�
is contin-

uous on C1 (The proof can be obtained from its 3-D case in the Appendix section.)

We mention the following observations and omit their proofs. Instead, we use two examples and
technological tools to explore these observations and quickly expand our learning horizons to appli-
cations.

249



The Electronic Journal of Mathematics and Technology, Volume 2, Number 3, ISSN 1933-2823

Theorem 8 Let [x(s); y(s)] be a regular parametric plane curve of class C3, and P be a point which
is not a point of [x(s); y(s)], and the tangents of [x(s); y(s)] do not pass through P . Then the ortho-
tomic curve of [x(s); y(s)] relative P has a cusp at s = s0, if and only if [x(s); y(s)] has an in�ection
point at s = s0.

We also make the following observations:

Remark 9 Let the point P 2 C1 \C2: Then the re�ection of P with respect to C2 at the point P is P
itself.

Remark 10 Let P be a point lie on bothC1 and the tangent line toC2 at a pointQ. Then the re�ection
of P with respect to the curve C2 at the point Q is P itself.

Remark 11 If a curve C1 is symmetric to C2 with respect to a tangent line to C2 at a point Q; then
the re�ection of C1 with respect to C2 at the point Q is C2.

Example 12 We refer to Figure 5 below, where C1 = [x1(t); y1(t)] = [2 cos t�cos 2t; 2 sin t�sin 2t];
t 2 [0; 2�] (shown in blue cardioid on the left), and C2 = [s; f(s)] = [s; (s�2)2(s�1)(s+1)] (shown
in green). We set C3 = [p(t); q(t)] to be the re�ection of C1 with respect to the tangent line to C2 at a
point A (i.e. at a �xed s): Then:
(1) For a �xed point C on C1 (light source at a point on C1); the orthotomic curve of C2 relative to C
is shown in black, which can be experimented by using [Geometry Expression] (See [11) and veri�ed
by using [Maple] (See [12]).

A

C'

B

C

B'

⇒ (2·cos(r)cos(2·r),2·sin(r)sin(2·r))

X=2·cos(T)cos(2·T)

Y=2·sin(T)sin(2·T)

x

r

Y=(2+X)2·(1+X)·(1+X)

s

Figure 5. Orthotomic Curve

(2) Picking another point B on C1; we obtain another orthotomic curve (shown in orange in Figure
5). We observe the following behavior, the proof can be found in Appendix.

As B approaches C; the orange orthotomic curve approaches the black orthotomic curve.
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(3) The sharp corner (cusp) of the black orthotomic occurs at the in�ection point of C2: This can
be experimented with [Geometry Expression]. Detailed proof can be found in [4].

Example 13 Let C1 = [x1(t); y1(t)] = [2 cos t � cos 2t; 2 sin t � sin 2t]; t 2 [0; 2�]; and C2 =
[s; f(s)] = [s; (sin s) � 2]. We set C3 = [p(s; t); q(s; t)] to be the re�ection of C1 with respect to C2:
See the graph below.

B'

P

B
C

x
Y=2+sin(X)

X=2·cos(T)cos(2·T)

Y=2·sin(T)sin(2·T)

s
r

Figure 6. Another Orthotomic Curve.

Then
(1) for a �xed point C on C1 (light source at a point on C1); the orthotomic curve of C2 relative
to C is shown in black in Figure 6. Experimentation with this idea is done by using [Geometry
Expression] (see [13]) and veri�ed by using [Maple] (see [14]). We describe here how we �nd the
orthotomic curve of C2 when we �x a light source at a point on C1. We let [x0; y0] = [s0; (sin s0)� 2]
be a point on C2; then the tangent line equation for C2 at each (x0; y0) is:

y = (cos s0)x+ (sin s0)� 2� (cos s0) s0:

Now we will think of s0 as a variable s and notice that the slope is cos s so

� = tan�1 (f 0(s)) = tan�1(cos(s))

and the y � intercept is

[f(s)� f 0(s) � s] = (sin s)� 2� (cos s) s:

We can write�
p(s; t)
q(s; t)

�
=

�
cos [2 tan�1 (f 0(s))] sin [2 tan�1 (f 0(s))]
sin [2 tan�1 (f 0(s))] � cos [2 tan�1 (f 0(s))]

� �
x1(t)� 0

y1(t)� [f(s)� f 0(s) � s]

�
+

�
0

[f(s)� f 0(s) � s]

�
: (14)
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or �
p(s; t)
q(s; t)

�
=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
x1(t)� 0

y1(t)� ((sin s)� 2� (cos s) s)

�
+

�
0

(sin s)� 2� (cos s) s

�
: (15)

(2) Picking another light source B on C1; we obtain another orthotomic curve (shown in orange in
Figure 6). We observe the following behavior, the proof can be found in Appendix.

As B ! C; the orange orthotomic curve! the black orthotomic curve.

(3) The sharp corner (cusp) of the black orthotomic occurs at the in�ection point of C2. We can use
[Geometry Expression] to experiment with this result. Detailed proof can be found in [4].

2.2 Caustic curves
We now describe how orthotomic curves are used in physics and explore how technological tools ac-
celerate the learning process. In differential geometry, a caustic is the envelope of rays either re�ected
or refracted by a manifold. It is related to the optical concept of caustics. The evolute of a curve C
is the set of all its centers of curvature. It is equivalent to the envelope of all the normals to C.
The evolute of a parametrically de�ned curve [x(t); y(t)] (see http://en.wikipedia.org/wiki/Evolute) is
described by:

X(x; y) = x� y0 (x
0)2 + (y0)2

x0y00 � x00y0 ; (16)

Y (x; y) = y + x0
(x0)2 + (y0)2

x0y00 � x00y0 :

Alternatively, given an curve r(t), its evolute is described by

e(t) = r(t) +
n(t)

k(t)
; (17)

where n(t) is the normal vector and k(t) is the curvature of the curve at r(t), respectively.
To �nd the caustic generated by rays re�ected by a curve C from a light source O (caustic of C

relative to O) is equivalent to �nding the evolute of the orthotomic of C relative to O. We explore
the caustic curve by using the evolute of the orthotomic, applying equation [16] and with the help of
[Maple] in the following examples.

Example 14 We choose a light sourceO on a circle C1 = [2+2 cos t; 2+2 sin t] and given an ellipse
C2 = [2 cos s; 3 sin s]: The orthotomic curve [p(s; t); q(s; t)] of C2 relative to O can be found by (13):

p(s; t) = cos

�
2 tan�1

�
3 cos s

2 sin s

��
(2 + 2 cos t)� sin

�
2 tan�1

�
3 cos s

2 sin s

��
� (18)�

2 + 2 sin t� 3 sin s� 3 cos
2 s

sin s

�
;
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and

q(s; t) = � sin
�
2 tan�1

�
3 cos s

2 sin s

��
(2 + 2 cos t)� cos

�
2 tan�1

�
3 cos s

2 sin s

��
� (19)�

2 + 2 sin t� 3 sin s� 3 cos
2 s

sin s

�
+ 3 sin s+

3 cos2 s

sin s
:

When we �x the light source at t = 0 on C1; the orthotomic curve [p(s; 0); q(s; 0)], where s 2 [0; 2�];
is shown Figure 7, which is done by [Maple] (see [15]).

Figure 7. An orthotomic curve when light source is at (0,0)..
The evolute of [p(s; 0); q(s; 0)], or equivalently the caustic of C2 relative to the light source at t = 0
on C1, can be computed by [Maple] (see [15]), which we invite readers to explore. We show the
orthotomic curve and its corresponding caustic curve in Figure 8.

Figure 8. An orthotomic curve and the caustic.
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3 General Inverses in 3-D, orthotomic and caustic surfaces
We turn our attention to �nding the re�ection of a light source on a parametric surface S1 with respect
to a parametric surface S2. A parametric surfacew (u; v) is called smooth if the tangent vectors in the
u and v directions satisfy

wu �wv 6= (0; 0; 0) throughout its domain.

Given a smooth surface w (u; v) = [x(u; v); y(u; v); z(u; v)]. The tangent plane to w at the point
X0 = (x(u0; v0); y(u0; v0); z(u0; v0) onw is the plane that contains the tangent vectorswu;wv and the
pointX0, and thereforewu�wv is a normal vector of the tangent plane. We will derive the formula for
the re�ection of a surface S1 = [x1(s; t); y1(s; t); z1(s; t)] with respect to the tangent plane to another
smooth surface S2 = [x2(u; v); y2(u; v); z2(u; v)] at a pointX0 on S2. We denotewu�wv at the point
X0 by (a(u0; v0); b(u0; v0); c(u0; v0)). For brevity, we use a = a(u0; v0); b = b(u0; v0); c = c(u0; v0)
without causing any confusion.

Let X0 =

24 x(u0; v0)y(u0; v0)
z(u0; v0)

35 2 S2, X =

24 x1(s0; t0)y1(s0; t0)
z1(s0; t0)

35 2 S1, and (20)

A = A(u0; v0) =
1

a2 + b2 + c2

24�a2 + b2 + c2 �2ab �2ac
�2ab a2 � b2 + c2 �2bc
�2ac �2bc a2 + b2 � c2

35 : (21)

Thus, the re�ection of X =

24 x1(s0; t0)y1(s0; t0)
z1(s0; t0)

35 with respect to the tangent plane to S2 at X0 2 S2 is

24p(s0; t0; u0; v0)q(s0; t0; u0; v0)
r(s0; t0; u0; v0)

35 = A (X �X�
0 ) +X

�
0 ; (22)

where X�
0 =

24 0
0

X0�(a;b;c)
c

35 2 S2:
If we consider (u0; v0) as variables, (22) also provides us the orthotomic surface of S2 relative to

X .

Example 15 We pick a light source at a point on the sphere S1 =

24 x1(s; t) = 4 + sin t cos sy1(s; t) = 2 + sin s sin s
z1(s; t) = �1 + cos t

35 ;
where s 2 [0; 2�] and t 2 [0; �]: We want to �nd the orthotomic surface of

S2 =

24 x2(u; v) = 7
5
sinu cos v

y2(u; v) =
6
5
sinu sin v

z2(u; v) = cosu

35 ;
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u 2 [0; �] and v 2 [0; 2�], relative to a light source on S1. The orthotomic surface

24 p(0; 0; u; v)q(0; 0; u; v)
r(0; 0; u; v)

35
can be computed by using equation (22). We plot this surface using [Maple] (see [16]) in Figure 9.

6.5

1.5

3.5

7

2

3
6.0

3.5

1.0

1.5

4.0

Figures 9. An orthotomic surface.

Naturally, we would like to explore the caustic surface, which is the evolute of an orthotomic sur-
face, or the envelope of an orthotomic surface normals. However, we expect more than one curvature
for a curve on a surface in 3-D, and we need more information from differential geometry, which is
beyond the scope of this paper. We use the following example to demonstrate that a caustic surface is
a natural extension from its caustic curve in 2-D. We use the principle curvatures to obtain the caustic
surface (which is called Focal Surface in [2]). First, we use the following example to describe how
we obtain the orthotomic surface.

Example 16 Let the light sourceO be at the origin and let S be the ellipsoid [7
5
sinu cos v; 6

5
sinu sin v; cosu];

where u 2 [0; �] and v 2 [0; 2�]. The orthotomic surface of S relative to O can be computed and
plotted by using [Maple] (see [17]). The ellipsoid S is interior to its orthotomic surface, which are
both shown in Figure 10.

2.4
0.4

1.6

2.80.81.2
2

1

0

1

2

Figure 10. Orthotomic surface for an ellipsoid.
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This is understandable since in 2D case, if we consider the light sourceO be at (0; 0), which is interior
to the ellipse [7

5
cos s; 6

5
sin s]; where s 2 [0; 2�], the orthotomic curve of the ellipse relative to O (see

[18]) is 26664
� sin(2 arctan(6 cos s

7 sin s
))(�6

5
sin s� 6 (cos(s)

2)

5 sin s
)

� cos
�
2 arctan

�
6 cos s

7 sin s

�� 
�6
5
sin s� 6

5

(cos s)2

sin s

!
+ 6

5
sin s+

6 (cos s)2

5 sin s
:

37775 (23)

We plot the ellipse (in green), its orthotomic curve (in blue), and its caustic curve (in red) relative to
O in Figure 11.

Figure 11. The 2D case for an ellipse, orthotomic, and caustic curve.

Similar to our 2-D discussion, to �nd the caustic surface, we should continue using the orthotomic
surface we have obtained. However, the computations become impossible. We consider the following
simpli�ed version.

Example 17 For simplicity, we assume that the orthotomic surface of a surface S is the ellipsoid
[7
5
sinu cos v; 6

5
sinu sin v; cosu]; where u 2 [0; �]; and v 2 [0; 2�]: Let the light source O be at the

origin (0; 0; 0): The caustic surface of S relative to O, when we use the principle curvatures, is shown
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in Figure 12 (see [19]):

Figure 12. A caustic surface when using principle curvatures.

The plot above makes the 3D caustic surface comprehensible.

4 Conclusions
It is evident that geometry software packages, such as ClassPad and Geometry Expressions have
allowed us experimentation and conjecture in the process of �nding the re�ections. We then use
Maple, a computer algebra system, to prove our conjectures analytically. We would also like to
point out that technological tools prompted us to study more mathematics (in this case in the area of
differential geometry) and link mathematical contents to applied areas, in this case, optics of physics
(see [1] and [2]) and computer graphics (see [3]). Authors conjecture that evolving technological
tools will prompt learners to expand their mathematics knowledge to other applied �elds.

5 Acknowledgement
The authors would like to thank Phil Todd for many valuable discussions on the use of Geometry
Expressions, orthotomic and caustic curves.
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8 Appendix
Given two surfaces S1 = [x1(s; t); y1(s; t); z1(s; t)] and S2 = [x(u; v); y(u; v); z(u; v)], where u 2
[0; �]; and v 2 [0; 2�], our goal is to prove that a "small change" in the light source location on S1
produces a "small change" in the output orthotomic surface of S2:
Let X = S1 and Y = forthotomic surface of S2 relative to l : l 2 X = S1g
We de�ne a function f : X ! Y with f(l) := Sl = orthotomic surface of S2 relative to l for all

l 2 X:
Let l0 = [x1(s0; t0); y1(s0; t0); z1(s0; t0)] and l1 = [x1(s1; t1); y1(s1; t1); z1(s1; t1)] be two points

on S1
and (a; b; c) = (a(u; v); b(u; v); c(u; v)) be a speci�ed normal vector of the tangent plan to S2 at a

point [x(u; v); y(u; v); z(u; v)] 2 S2

Let X�
0 (u; v) =

24 0
0

(a(u;v);b(u;v);c(u;v))�[x(u;v);y(u;v);z(u;v)]
c(u;v)

35, which is the z� intercept of the tangent
plan to S2 at a point [x(u; v); y(u; v); z(u; v)] 2 S2:

By (22), f(l) = Sl =

24p(s; t; u; v)q(s; t; u; v)
r(s; t; u; v)

35 = A(u; v)(l �X�
0 (u; v)) +X

�
0 (u; v)

In order to consider the closeness of the output orthotomic surfaces, we de�ne the metric (distance
function) of the space Y :

dy(Sl0 ; Sl1) := jjSl0 � Sl1jj = sup
(u;v)

8<:
������
24p(s0; t0; u; v)q(s0; t0; u; v)
r(s0; t0; u; v)

35�
24p(s1; t1; u; v)q(s1; t1; u; v)
r(s1; t1; u; v)

35������
9=; for all l0; l1 2 X:

We �rst prove the following lemma.

Lemma 18 jf(l0)� f(l1)j � 15 jl0 � l1j for all l0; l1 2 X:

Proof: We use the same notation for l0 and l1as above.

Since f(l0) = Sl0 =

24p(s0; t0; u; v)q(s0; t0; u; v)
r(s0; t0; u; v)

35 = A(u; v)(l0 �X�
0 (u; v)) +X

�
0 (u; v)

jf(l0)� f(l1)j = dy(Sl0 ; Sl1) := jjSl0 � Sl1jj = sup
(u;v)

fjA(u; v)(l0 � l1)jg

= sup
(u;v)

8<:
������ 1
a2+b2+c2

24�a2 + b2 + c2 �2ab �2ac
�2ab a2 � b2 + c2 �2bc
�2ac �2bc a2 + b2 � c2

3524x1(s0; t0)� x1(s1; t1)y1(s0; t0)� y1(s1; t1)
z1(s0; t0)� z1(s1; t1)

35������
9=;

=sup
(u;v)

8>>>><>>>>:

����������
1

a2+b2+c2

266664
(�a2 + b2 + c2) (x1(s0; t0)� x1(s1; t1))� 2ab(y1(s0; t0)� y1(s1; t1))

�2ac(z1(s0; t0)� z1(s1; t1))� 2ab (x1(s0; t0)� x1(s1; t1))+
(a2 � b2 + c2)(y1(s0; t0)� y1(s1; t1))� 2bc(z1(s0; t0)� z1(s1; t1))
�2ac (x1(s0; t0)� x1(s1; t1))� 2bc(y1(s0; t0)� y1(s1; t1))+

(a2 + b2 � c2)(z1(s0; t0)� z1(s1; t1))

377775
����������

9>>>>=>>>>;
� sup

(u;v)

����� 1
a2+b2+c2

[(�a2 + b2 + c2) (x1(s0; t0)� x1(s1; t1))� 2ab(y1(s0; t0)� y1(s1; t1))
�2ac(z1(s0; t0)� z1(s1; t1))]

�����
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+sup
(u;v)

����� 1
a2+b2+c2

[�2ab (x1(s0; t0)� x1(s1; t1)) + (a2 � b2 + c2)(y1(s0; t0)� y1(s1; t1))
�2bc(z1(s0; t0)� z1(s1; t1))]

�����
+sup
(u;v)

����� 1
a2+b2+c2

[�2ac (x1(s0; t0)� x1(s1; t1))� 2bc(y1(s0; t0)� y1(s1; t1))
+(a2 + b2 � c2)(z1(s0; t0)� z1(s1; t1))]

������
Note: since

����a2+b2+c2a2+b2+c2

��� � 1 and �� �2ab
a2+b2+c2

�� � �� �2ab
a2+b2

�� � 2 jajp
a2+b2

jbjp
a2+b2

� 2 � 1 � 1 = 2
�

� f1 � jx1(s0; t0)� x1(s1; t1)j+ 2jy1(s0; t0)� y1(s1; t1)j+ 2jz1(s0; t0)� z1(s1; t1)jg
+ f2jx1(s0; t0)� x1(s1; t1)j+ 1 � jy1(s0; t0)� y1(s1; t1)j+ 2jz1(s0; t0)� z1(s1; t1)jg

+ f2jx1(s0; t0)� x1(s1; t1)j+ 2jy1(s0; t0)� y1(s1; t1)j+ 1 � jz1(s0; t0)� z1(s1; t1)jg

= 5fjx1(s0; t0)� x1(s1; t1)j+ jy1(s0; t0)� y1(s1; t1)j+ jz1(s0; t0)� z1(s1; t1)jg

� 5

8<:
������
24x1(s0; t0)� x1(s1; t1)y1(s0; t0)� y1(s1; t1)
z1(s0; t0)� z1(s1; t1)

35������+
������
24x1(s0; t0)� x1(s1; t1)y1(s0; t0)� y1(s1; t1)
z1(s0; t0)� z1(s1; t1)

35������+
������
24x1(s0; t0)� x1(s1; t1)y1(s0; t0)� y1(s1; t1)
z1(s0; t0)� z1(s1; t1)

35������
9=;

= 15

������
24x1(s0; t0)� x1(s1; t1)y1(s0; t0)� y1(s1; t1)
z1(s0; t0)� z1(s1; t1)

35������ = 15 jl0 � l1j :
We now have the main theorem.

Theorem 19 f : X ! Y is continuous on X:

Proof: Let l1 2 X = S1, we must show that f is continuous at l1:
8" > 0, 9� = "

15
> 0 such that for all l0 2 X = S1and jl0 � l1j < �

=) jf(l0)� f(l1)j � 15 jl0 � l1j < 15
�
"
15

�
= ":
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